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This robot foosball 
table is meant to serve 
as a benchmark test for 
neuromorphic algorithms 
and other technologies.



GOOAALL!!!



FOR THE PAST 25 YEARS 
or so, those of us who seek 
to mimic the brain’s work-
ings in silicon have held an 
annual workshop in the 
mountain town of Telluride, 
Colo. During those summer 
weeks, you can often find 
the participants unwinding 
at the bar of the New Sheri-
dan Hotel on the town’s 
main street. As far back as 
most can remember, there 
has been a foosball table in 
the bar’s back room. During 
the weeks of the workshop, 
you’ll usually find it sur-
rounded by a cluster of 
neuromorphic engineers 
engaged in a friendly rivalry 
that has spanned many 
years. It was therefore 
almost a foregone conclu-
sion that someone was 
going to build a neuromor-
phic-robot foosball table. 

That someone was me.
It turns out there’s more to the idea 

than simple fun. After all, why do we play 
competitive games like foosball? We are 
drawn to them for social reasons, but we 
also enjoy learning the mechanics and 
improving our performance. Games are 
how we boost our hand-eye coordina-
tion, tracking and predictive abilities, and 
strategic thinking. Those are all skills we 
want robots to have.

Humans have always been fascinated 
by the idea of machines playing our 
games. As far back as the late 18th cen-
tury, the Mechanical Turk hoax enthralled 
and amazed audiences with its (fictitious) 
ability to beat humans at chess. But we 
were all just as amazed in 1997 when 
IBM’s Deep Blue did it for real. Now, such 
triumphs are almost a regular occurrence, 
with DeepMind’s AI systems first defeat-
ing a human champion at the board game 
Go, and then going on to victory with the 
video game StarCraft II. (An AI will prob-
ably have conquered another of your 
favorite games by the time you finish 
reading this.)

These feats of computing are pretty 
good measures of a system’s abilities. But 
they fall short in some important ways. 
Robots need to operate in a real world 
full of noise, irregularities, and evolving 
environments. The rigid rules and con-
strained environment of Go will never 

provide such challenges. Real-world 
games, certainly foosball and possibly 
pinball, might be a better measure of 
whether our efforts to match the might 
of the human brain are really on track.

W hy are we so interested in 
learning biology’s computa-
tional and sensing secrets? 

Frankly, it’s because they are so superior 
to today’s computing technology, which 
seems to be fast reaching its limits. Com-
modity sensors produce too much data 
for computers to understand, and those 
computers consume too much power 
trying to make sense of it. Biology out-
performs all our technologies when it 
comes to sensing and perceiving the 
world, and biological organisms are 
orders of magnitude more power effi-
cient, reliable, robust, and adaptable.

My colleague at Western Sydney Uni-
versity’s International Centre for Neu-
romorphic Systems (ICNS), André van 
Schaik, gives a great example: the 
humble mosquito. Its brain is composed 
of only about 200,000 neurons, yet its 
flight control and obstacle avoidance are 
far superior to anything that we have 
built. Next, consider the dragonfly, 
which can capture a mosquito midflight. 
It has about five times as many neurons 
as the mosquito and consumes perhaps 
30 mosquitoes’ worth of energy per day, P
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about equivalent to a few grains of sugar.
One of the most straightforward 

examples of how neuromorphic technol-
ogy can be used in sensing is vision, 
which happens to be my speciality. 
When it comes to building devices that 
need to see the world, cameras with 
CMOS imagers are almost always used. 
These cameras are such a commodity 
that it’s easy to forget that a picture 
(which computer-vision researchers call 
a frame) is not the only way to perceive 
the visual world.

Cameras are built to capture a repre-
sentation of a scene that’s good enough 
to fool our visual system. We don’t really 
know what features or information the 
visual system is using to understand the 
scene, so cameras simply capture as much 
information as possible. That approach 
is fine for taking static pictures, but it’s 
not a great fit for doing things like track-
ing objects through space. For example, 
imagine trying to track an object—a foos-
ball ball, for instance—that’s moving so 
fast it completely leaves the edge of the 
image in the 33 milliseconds between one 
frame and another. Sure, you could use a 
camera with double the frame rate, but 
that means you’ve now got twice as much 
data to sort through just to keep track of 
that one object.

Biological eyes work differently. There 
are no frames in biology, and there are too 

few nerves going between the eyes and 
the brain to transmit whole images 
anyway. Neuromorphic vision sensors 
draw inspiration from how the eye’s pho-
toreceptors work; they still use lenses to 
project the world onto a grid of pixels on 
a silicon chip, but it’s what those pixels do 
with the information that’s interesting.

The pixels in neuromorphic sen-
sors—also called event-based imagers—
report only changes in illumination and 
only in the instant when the changes 
happen. They don’t produce any data 
when nothing is changing in front of 
them. This approach drastically reduces 
the amount of data these cameras gener-
ate, which means less data to store, to 
transmit, and to process. These imagers 
therefore use less power both in the 
camera itself and for all the computation 
that needs to happen afterward.

Startups Prophesee and IniVation 
already have brands of event-based 
imagers on the market. And these sen-
sors have even gone to space: Neuromor-
phic cameras from ICNS will spot 
satellites and space junk from orbit, and 
a different sensor was recently installed 
on the International Space Station to 
examine ephemeral atmospheric phe-
nomena, such as sprites.

Neuromorphic researchers have also 
tackled our other senses. They’ve devel-
oped silicon cochleas to model hearing, 

tactomorphic sensors to explore touch, 
and even a silicon nose to identify odors 
and gases. Beyond sensing, neuromor-
phic engineering seeks to understand the 
fundamental ways in which brains pro-
cess and store information. In fact, the 
origins of neuromorphic engineering lie 
in trying to build electronic neurons to 
better understand how real neurons in 
the brain operate.

Neuromorphic sensors, and the 
brain-inspired algorithms that work with 
the data they produce, allow for special-
ized systems built specifically for effi-
cient performance on certain tasks. 
However, it can be difficult to know when 
these sensors are capturing the right 
information or when our algorithms are 
working properly. That’s where the need 
for benchmarks comes into play.
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Left: Neuromorphic-robot 
foosball was born from 
neuromorphic engineers 

playing at the New Sheridan 
Hotel in Telluride. 

Right: In its two trips to 
the Telluride Neuromorphic 

Cognition Engineering 
Workshop, our robot  

foosball table has seen 
plenty of use.



To help understand why we need foos-
ball as a neuromorphic benchmark, take 
the example of how an event-based 
imager would handle a benchmark that 
today’s deep-learning AIs deal with all 
the time, the MNIST database. MNIST 
(short for Modified National Institute of 
Standards and Technology) is like the 
“Hello, World!” of machine vision. Its 
data set of thousands of low-resolution 
images of handwritten numerals offers a 
baseline for how well an image-recogni-
tion neural network is working.

An event-based imager would 
momentarily see each MNIST numeral 
as it flashes in front of it. For such a 
sensor to continue to see the static 
numerals, either the camera must move 

or the digit must, and in a controlled way. 
Eyes do something similar: Their focus 
moves from point to point until the brain 
understands what it’s seeing.

Creating data sets like MNIST that are 
a suitable test for neuromorphic systems 
is not trivial, and the truth is they’re not 
very useful. The process of linking 
motion to imaging can be so dynamic 
that for anything but the most con-
strained tasks, the number of possibili-
ties would be quite large. So how can we 
determine if neuromorphic systems are 
working, and how can we compare them 
to other approaches?

There are, of course, benchmarks that 
are interactive simulations. For example, 
in autonomous driving simulations, the 

view fed to the algorithm from the car’s 
sensors changes as the car’s position 
changes. But these simulations have their 
problems. The most significant is the 
contrast between controlling a simula-
tion and controlling a physical system. 

The major difference between simu-
lated systems and reality lies in the 
amount and nature of noise in the real 
world. For most AI systems, noisy data is 
a big problem. But there’s reason to believe 
that neuromorphic systems thrive with 
noise, and perhaps even need it. That’s not 
as strange as it might seem. Our own sense 
of movement and body position is actually 
enhanced by a certain amount of noise. 
Attempts to mitigate noise in neuromor-
phic systems, either through extra pro- W
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We designed the neuromorphic-robot foosball table to be easy to assemble, so other groups could make their own. Motors 
at the end of the rods rotate the players for kicking. A separate set of motors and pulleys slide the players across 
the table. Controllers orchestrate the motion according to the output of a neuromorphic algorithm.

 MOTOR CONTROLLERS, 
ONE FOR EACH POLE

ADJUSTABLE TABLE LIGHTING IS NEEDED 
FOR SOME DEEP-LEARNING ALGORITHMS

FOOSBALL TABLE 
CONTROLLER 
SUPERVISES 
ALL MOTOR 
CONTROLLERS STABILIZATION 

CABLES LIMIT 
CAMERA MOTION

CHANNEL FOR 
TRANSLATION 
MOVEMENT

MOTION LIMIT 
SENSORS

TRANSLATION 
MOTOR

TRANSLATION 
MOTOR

KICK 
MOTOR

KICK 
MOTOR



cessing or by designing real-world 
systems that are closer to our idealized 
simulations, may have held us back.

So what we need to move neuromor-
phic systems forward are benchmarks 
that are physically embedded in the real 
world.

 
Let’s start with something simple: pin-
ball. It’s actually a very good choice for a 
benchmarking problem because the 
game is so straightforward. There are 
only two outputs, one for each flipper, 
and the game largely revolves around 
timing. The realities of the physical 
system are unforgiving, and you cannot 
simply pause or slow the movement of 

the ball to allow an algorithm to catch up. 
Most important, there’s a score in pinball 
and a clear objective to maximize that 
score. So whichever system gets the high-
est score at pinball is unequivocally the 
better robotic pinball algorithm.

We can also make the problem more 
difficult by tweaking the game a little. 
For example, we can add multiple balls 
at the same time, or even decoy balls or 
balls of a material that will behave dif-
ferently on the pinball table. This allows 
us to include a wider range of tasks such 
as tracking, detecting, segmenting, and 
identifying the balls while still main-
taining the score as the ultimate metric 
for success.

ICNS has built a demo using a robotic 
pinball machine that can keep three balls 
on the table with about the same effec-
tiveness as a human player. Amazingly, 
unlike the hundreds of thousands or mil-
lions of artificial neurons found in 
common deep-learning-based systems, 
this tiny neuromorphic brain interprets 
and acts on the input from an event-
based imager using just two artificial 
neurons.

 

P inball is great, but my team felt 
there was a need for a more com-
plicated and demanding task to 

further push the neuromorphic research 
community. Also, we like playing foosball 
at the New Sheridan Hotel’s bar.

Foosball looks like an easy game for 
robots: All the action happens in two 
dimensions, and it takes only eight motors 
to control all the little figures on the table. 
But it’s much more difficult than it seems. 

Our approach to building a robotic foosball table  
aims to re-create the same inputs as those  
experienced by a human player.
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Left: Like biological 
eyes, event-based cameras 
register only the changes 
in a scene. This greatly 
reduces the data needed 
for tracking the ball.

Below left: Each motor has 
its own controller.

Below right: The table 
control system supervises 
the motor controllers and 
performs other duties.



There have been a few attempts over 
the years at building a robotic foosball 
table with varying degrees of success, but 
none using neuromorphic sensors and 
algorithms. The prior robotic systems 
often needed to modify the game to give 
the robot an advantage. For example, the 
foosball table built by Brigham Young Uni-
versity made use of a color-segmented 
tracking algorithm and required that the 
ball be the only green object on the table. 
The robotic foosball table at École Poly-
technique Fédérale de Lausanne (EPFL), 
in Switzerland, is impressive, but it sim-
plifies the task dramatically by replacing 
the bottom of the foosball table with a 
transparent plastic sheet and letting the 
camera look up, thereby always providing 
an unobstructed view of the ball.

Our approach aims to re-create the 
same inputs as those experienced by a 
human player. The camera looks down 
on the table, giving it an obstructed view 
that’s similar to what a human would 
have. And we use a regulation ball, not 
one with special markings or colors. 

 

O ur robotic foosball table has so 
far made two trips from Australia 
to the mountains of Colorado. For 

three weeks at a time, teams of fresh neu-
romorphic engineers have descended upon 
the problem with gusto, taking up the chal-
lenge of programming the table to achieve 
the highest score. The results highlighted 
the difficulties of the task and the shortfalls 
of conventional AI methods.

For one thing, tracking the ball with a 
neuromorphic sensor should be easy, and 
in the trivial case of the pinball machine, 
it clearly is. However, foosball is a more 
dynamic game, especially when a human 
player is involved. Human players each 
have different strategies, and their move-
ments are not always logical or even 
necessary.

Attempts to use non-neuromorphic 
solutions, such as deep learning, led to a 
few interesting lessons. First, it became 
apparent that the way deep-learning 
neural networks are processed—usually 
on a GPU—is not well suited to this type 
of task. GPUs operate best on batches of 
images rather than a single frame at a time. 
This is a problem, because we don’t care 
about where the ball was in the past, and 
we don’t really even care about where the 
ball is at the moment; what we really care 
about is where it’s going to be next. So the 
deep-learning solutions were processing 

a lot of unnecessary information.
Second, we found that the deep-learn-

ing methods were extremely sensitive to 
small variations in the problem. A slight 
shake of the camera, a bit of skew in the 
table from players pulling it in different 
directions, or even a shift in lighting 
conditions caused the elegant perfor-
mance of deep-learning ball trackers to 
break down. It’s likely that we could 
increase the amount of training to handle 
all these small deviations—there’s a 
whole field of research devoted to build-
ing networks that are resilient to these 
sorts of things—but that would take 
many, many more games.

Our latest approaches look toward 
simpler and faster neuromorphic net-
works. These algorithms process every 
event—also called a “spike” in neuro-
morphic computing—from the camera 
and use them to update the estimation 
of the position of the ball.

Instead of deep learning’s vast layers 
of neurons, these networks use 16 small 
pattern-recognition networks of 18 x 18 
pixels each, so only 364 pixels are being 
considered at any point in the game. This 
makes them very fast and mostly accurate. 
And being fast is critically important, 
because event-driven algorithms need to 
keep up with the time-sensitive data being 
produced by the camera. Each event 

necessitates no more than some small and 
simple calculations. While this system 
doesn’t pose much of a threat to an expe-
rienced player, our network’s tracking has 
improved to the point where it can quite 
reliably block the ball. Goal scoring, how-
ever, is still a work in progress.

Deep learning could perform a similar 
operation, in principle, but it needs to 
look at the entire image, and it performs 
orders of magnitude more calculations 
for each layer of the network. Not only is 
this far more data than our system uses, 
but it also effectively turns the event-
driven output back into frames.

Currently, our algorithm is trained 
offline from recorded event-based data. 
It uses a genetic algorithm—one that 
evolves toward an optimal solution—to 
both learn what the ball looks like and to 
create good estimates of where it will be 
next. The algorithm learns how to recog-
nize the ball from the data itself, rather 
than through any coding on our part. It 
also learns from how the ball really 
moves, rather than our own expectation 
of it. These are both important points, as 
our preconceptions of a good model for 
the ball turned out to be very far from 
those that work well. We also found that 
our simulations and expectations for the 
motion of the ball were wildly off.

Our next step is to move our learning 
from offline training to real-time online 
learning, allowing the network to contin-
uously learn and adapt while the game is 
in progress. Among other things, that may 
help with a sensitivity the system has now 
to the specific table it’s trained on. 

These event-driven algorithms are an 
intermediate step toward algorithms 
designed to work using so-called spike-
based neuromorphic hardware. These 
brain-inspired processors, such as Intel’s 
Loihi and BrainChip’s Akida, encode 
information as the timing of spikes and 
are a natural fit with event-based sensors. 
Once we have stable spike-based algo-
rithms, we’ll be able to make improve-
ments more quickly. 

Hopefully, we won’t be the only ones 
making these improvements. In designing 
the robot foosball table, we focused on 
keeping the costs down and made the 
entire project open source. With luck, 
other neuromorphic research groups will 
see enough value in having their own 
robot benchmarks. And if not, they’ll be 
able to find us and our foosball table in 
Telluride later this year.  n

Pinball is a simple test of neuro-
morphic systems. It’s so simple, in 
fact, that we built a two- artificial-
neuron system that could keep three 
balls in play at once.
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